Comparing the Core and Shapley Value in an Example

Game Theory Course:
Jackson, Leyton-Brown \& Shoham

Compare Core and Shapley Value in an Example

- UN security council: 15 members.

Compare Core and Shapley Value in an Example

- UN security council: 15 members.
- 5 permanent members: China, France, Russia, UK, US

Compare Core and Shapley Value in an Example

- UN security council: I5 members.
- 5 permanent members: China, France, Russia, UK, US
- 10 temporary members

Compare Core and Shapley Value in an Example

- UN security council: 15 members.
- 5 permanent members: China, France, Russia, UK, US
- 10 temporary members
- 5 permanent members can veto resolutions.

Compare Core and Shapley Value in an Example

- UN security council: represent it as a cooperative game.

Compare Core and Shapley Value in an Example

- UN security council: represent it as a cooperative game.
- China, France, Russia, UK, US are labeled $\{1,2,3,4,5\}$
- $v(S)=1$ if $\{1,2,3,4,5\} \subset S$ and $\# S \geq 8$,
- $v(S)=0$ otherwise.

Compare Core and Shapley Value in an Example

- Let's start with a three-player game that has a similar structure:

Compare Core and Shapley Value in an Example

- Let's start with a three-player game that has a similar structure:
- 1 permanent member with a veto and 2 temporary members

Compare Core and Shapley Value in an Example

- Let's start with a three-player game that has a similar structure:
- 1 permanent member with a veto and 2 temporary members
- $v(S)=1$ if $1 \in S$ and $\# S \geq 2$,
- $v(S)=0$ otherwise.

Compare Core and Shapley Value in an Example

- $v(S)=1$ if $1 \in S$ and $\# S \geq 2, v(S)=0$ otherwise.

Compare Core and Shapley Value in an Example

- $v(S)=1$ if $1 \in S$ and $\# S \geq 2, v(S)=0$ otherwise.
- Core: $x_{1}+x_{2} \geq 1, x_{1}+x_{3} \geq 1, x_{1}+x_{2}+x_{3}=1, x_{i} \geq 0$.

Compare Core and Shapley Value in an Example

- $v(S)=1$ if $1 \in S$ and $\# S \geq 2, v(S)=0$ otherwise.
- Core: $x_{1}+x_{2} \geq 1, x_{1}+x_{3} \geq 1, x_{1}+x_{2}+x_{3}=1, x_{i} \geq 0$.
- Core: $x_{1}=1, x_{2}=0, x_{3}=0$.

Compare Core and Shapley Value in an Example

- $v(S)=1$ if $1 \in S$ and $\# S \geq 2, v(S)=0$ otherwise.

Compare Core and Shapley Value in an Example

- $v(S)=1$ if $1 \in S$ and $\# S \geq 2, v(S)=0$ otherwise.
- Shapley

$$
\text { Value }_{i}=\frac{1}{N!} \sum_{S \subseteq N \backslash\{i\}}|S|!(|N|-|S|-1)![v(S \cup\{i\})-v(S)] .
$$

Compare Core and Shapley Value in an Example

- $v(S)=1$ if $1 \in S$ and $\# S \geq 2, v(S)=0$ otherwise.
- Shapley

Value $_{i}=\frac{1}{N!} \sum_{S \subseteq N \backslash\{i\}}|S|!(|N|-|S|-1)![v(S \cup\{i\})-v(S)]$.

- 1 's value: $v(\{1,2,3\})-v(\{2,3\})=1$ weighted by $2 / 6$, $v(\{1,2\})-v(\{2\})=1$ weighted by $\mathrm{I} / 6, v(\{1,3\})-v(\{3\})=1$ weighted by I/6

Compare Core and Shapley Value in an Example

- $v(S)=1$ if $1 \in S$ and $\# S \geq 2, v(S)=0$ otherwise.
- Shapley

Value $_{i}=\frac{1}{N!} \sum_{S \subseteq N \backslash\{i\}}|S|!(|N|-|S|-1)![v(S \cup\{i\})-v(S)]$.

- 1 's value: $v(\{1,2,3\})-v(\{2,3\})=1$ weighted by $2 / 6$, $v(\{1,2\})-v(\{2\})=1$ weighted by $\mathrm{I} / 6, v(\{1,3\})-v(\{3\})=1$ weighted by $1 / 6$
- 2's value: $v(\{1,2\})-v(\{1\})=1$, weighted by $\mathrm{I} / 6$

Compare Core and Shapley Value in an Example

- $v(S)=1$ if $1 \in S$ and $\# S \geq 2, v(S)=0$ otherwise.
- Shapley

Value $_{i}=\frac{1}{N!} \sum_{S \subseteq N \backslash\{i\}}|S|!(|N|-|S|-1)![v(S \cup\{i\})-v(S)]$.

- 1 's value: $v(\{1,2,3\})-v(\{2,3\})=1$ weighted by $2 / 6$, $v(\{1,2\})-v(\{2\})=1$ weighted by $\mathrm{I} / 6, v(\{1,3\})-v(\{3\})=1$ weighted by $1 / 6$
- 2's value: $v(\{1,2\})-v(\{1\})=1$, weighted by $\mathrm{I} / 6$
- 3's value: $v(\{1,3\})-v(\{1\})=1$, weighted by $\mathrm{I} / 6$

Compare Core and Shapley Value in an Example

- $v(S)=1$ if $1 \in S$ and $\# S \geq 2, v(S)=0$ otherwise.
- Shapley

Value $_{i}=\frac{1}{N!} \sum_{S \subseteq N \backslash\{i\}}|S|!(|N|-|S|-1)![v(S \cup\{i\})-v(S)]$.

- 1 's value: $v(\{1,2,3\})-v(\{2,3\})=1$ weighted by $2 / 6$, $v(\{1,2\})-v(\{2\})=1$ weighted by $\mathrm{I} / 6, v(\{1,3\})-v(\{3\})=1$ weighted by $1 / 6$
- 2's value: $v(\{1,2\})-v(\{1\})=1$, weighted by $\mathrm{I} / 6$
- 3's value: $v(\{1,3\})-v(\{1\})=1$, weighted by $\mathrm{I} / 6$
- Shapley Value: $x_{1}=2 / 3, x_{2}=1 / 6, x_{3}=1 / 6$.

A way to the Shapley Value:

Cooperative Games

- Model complex multilateral bargaining and coalition formation, without specifying the particulars of a normal or extensive form
- Core: Based on coalitional threats - each coalition must get at least what it can generate alone
- Shapley Value: based on marginal contributions: what does each player contribute to each possible coalition.
- Other solutions...

